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Spin-density operator for the interacting two-spins systems 

Zbigniew Oziewiczt 
Institute of Theoretical Physics, University of Wroclaw, Cybulskiego 36, 50-205 Wroclaw, 
Poland 

Received 24 July 1984 

Abstract. For the system of the two interacting arbitrary spins on the K-shell we derive 
the multipole expansions of the spin-density operator in terms of the total spin operator 
as well as in terms of the individual spin operators. The density operator is described by 
means of the truly independent set of parameters: the populations, degrees of orientation 
and the directions of orientation. For the case of the cylindrical symmetry, the degrees 
are expressed by means of the moments. The paper contains many examples which are 
important for applications in muon and nuclear physics. The results should serve for the 
phenomenological analysis of the decays of the muonic atoms and other nuclear reactions. 
The detailed discussion of the simplest model of the depolarisation due to the spin-spin 
hyperfine interaction is also included. 

1. Introduction 

There are several treatments of the parametrisation of the spin-density operator for 
the case of the one arbitrary spin. The multipole expansion of the spin-density operator 
for this case, including the discussion of the notions of the orientation and of the 
polarisation, is rather exhaustively presented by Werle (1966), Csonka et a1 (1966) 
and Steiger and Fritz (1967) which contains the accurate treatment of several particular 
problems. For early discussions of this subject one should refer to the important paper 
by Tolhoek and Cox (1953). 

However, there is no systematic consideration of the interacting (correlated) system 
of two arbitrary spins. Here we consider mostly the spin-density operator diagonal in 
the total spin. The results should be valuable for the phenomenological analysis of 
some reactions in atomic and nuclear physics involving systems with non-zero spins. 
In particular we have in mind the nuclear muon capture process by oriented targets 
(Bukhvostov and Popov 1964, Bukhvostov et a1 1972, Hambro and Mukhopadhyay 
1975, Mukhopadhyay 1977) as well as the theory of exotic atoms. Some of our results 
can also find applications in the complicated theory of the atomic depolarisation of 
muons, as developed by Shmushkevich (1959) and Djrbashyan (1959) but mostly by 
Bukhvostov (1966, 1969). 

Section 2 collects together all the necessary definitions and formulae related to the 
tensor operators which will be used subsequently. The theory of tensor operators is 
presented in such excellent and well known works, as e.g. Edmonds (1957), Fano and 
Racah (1959), Varschalovich et a1 (1975), Jucys and Bandzaitis (1977). We refer also 
to the recent paper by Klimyk (1983) where the tensor operators are defined in a 
basis-free manner. We will give some comments related to Klimyk’s paper. The 
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polarisation operators of arbitrary rank are built up entirely from the total spin, tensor 
operator 9 (i.e. from the Lie algebra representation) and projectors. 

In 4 9  4 and 5 we derive the multipole expansion of the spin-density operator 
p p ( j 1 0 j 2 )  E End([j,]O[j,]) where [ j ]  denotes the ( 2 j +  1)-dimensional irreducible 
representation of the rotation group SO(3). If the spin-density operator is diagonal 
in the total spin then the multipole expansion can be given for arbitrary spin j, and 
j2,  in terms of the total spin operator S = j , + j , .  Then the parametrisation of the 
spin-density operator is related to the mean values of the polynomials in 9, which is 
important for the physical interpretation of the Fano polarisation tensors (coefficients) 
and the device of their measurements. Such a spin-density operator is finally completely 
described by the three kinds of truly independent sets of the parameters: populations 
{ p F } ,  non-negative degrees of the orientation { A  k} and the directions of orientation 
{unit vectors: e:}, which will be denoted by Pop, Deg and Dir respectively. The set 
of all possible values of the channel spin will be denoted by A(j,,  j,) or abbreviated 
to A :  A( j , ,  j2) { I j ,  - j21, I j l  - j2/ + 1, . . . , j, + j,}. Then we define 

Evidently dim Pop( j , ,  j,) = 2 min( j , ,  j2) in the sense that Pop( j l ,  j,) is the closed subset 
of R2 min(’13’2). In.the same sense dim Deg( j , ,  j,) = 2 E F = 4j, j2+ 2 max( j , ,  j2).  In fact 
Deg is the closed positive segment of the closed ball. Dir is the Cartesian product of 
the even-dimensional spheres, i.e. this is a manifold. One can easily obtain dim 
D i r = 2 Z F ( 2 F + l ) = N ( N + l )  where N = d i m  Pop+dim Deg. For the case j , j 2 = 0  
the above is reduced to the well known situation (see e.g. Werle 1966) when there is 
no Pop and dim Deg = 2( j, + j,) = 2j. 

The manifold Dir(j l ,  j,) for the particular cases is explicitly 

Dir(0, j )  = S 2  x S4 x . . . x S”, 

Dir(f, 1) = S 2  x S2 x S4 x S6,  

Dir(& i) = S2  x S4 

etc. 

We show how these parameters (1)-(3) are related to the mean values of the operators 
which are built up from the total spin operator 9 and projectors. 

The most important conclusion (see 9 9  4 and 5) is that the natural rather than the 
popular presentation of the spin-density operator in the factorised form: 

p ( j l O j J  = C P F P F ,  (4) 
FE A 

with the population independent operators p F :  Tr pF = 1, is in fact incorrect. In (4) the 
parametrisation of pF does depend on the populations in some simple way; this follows 
from the calculations of Tr p 2 s  1. The factorised form (4) has been employed in all 
previous publications, see e.g. Bukhvostov and Popov (1967, 1970), Bukhvostov et af 
(1972), Ciechanowicz and Mukhopadhyay (1978), Ciechanowicz and Oziewicz (1984). 
The factorised form (4), which suggests incorrectly the population independence of 
the pF operators, does not of course invalidate any of the previously published results. 
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However, our multipole expansion (see (38) below), as opposed to the factorised form 
(4), is more convenient 

We devote particular a t tc t ion  to the cylindrical symmetry in which case Dir( j , j 2 )  
is reduced to the discrete set. In 9 6 we will derive the general and still very simple 
expression (68) of the degrees of the orientation { A i }  in terms of the so-called moments, 
i.e. the powers of the operator m = 9 ( s ) ,  where s is the unit vector of the cylindrical 
symmetry. 

In 9 7 the multipole expansion of the spin-density operator in terms of the individual 
spin operators 

j ,  = YJ,Oid and j 2  = id 0 YJ2 ( 5 )  

in the space X= [ j , ]O[ j , ]  is considered. This leads to the reparametrisation of the 
spin-density operator. The new parameters (polarisation tensors) are related to the 
mean values of the operators built up from the individual spin operators ( 5 )  which 
could sometimes be more convenient for theoretical considerations (in connection with 
e.g. the depolarisation processes) or from the experimental point of view. If the 
spin-density operator is diagonal in the total spin then the new parameters are no 
longer independent. This is the source of the linear relations between components of 
the polarisation tensors and the simple formula which describes all such identities is 
derived. 

Throughout the paper the examples, most important from the point of view of 
possible applications to the phenomenological analysis of some nuclear reactions, 
including the nuclear muon-capture reaction by oriented or polarised targets with 
arbitrary non-zero spins, are considered in detail. Towards the end of the paper we 
discuss the simplest model of the depolarisation due to the spin-spin hyperfine 
interactions. 

2. Tensor operators 

We start with the basis-independent definition of the tensor operator. Let 2 and YE 
be the pair of linear spaces. Quite generally the tensor operator of the rank 2 is the 
linear mapping 

2 + E n d Y E = X O X * .  (6) 
This means that the space of rank 2 tensor operators in X is (End YE)O2*, where 
2* denotes the dual space of 2. Usually, however, the tensor operators are defined 
with respect to some group G. This is the particular case of (6) if both spaces, 2 and 
X, are the carrier spaces of the two representations of G. Then the tensor operators 
with respect to G are defined as the G-inuariant mappings (6). Suppose that YE 
decomposes into the direct sum of the irreducible, with respect to G, subspaces 
Yl=@FXF (for simplicity we consider the case without the multiplicities, mF = 1). 
This splitting can conveniently be represented uniquely through the set of the projectors 
{PF}, i.e. the idempotent operators, such that 

1 PF = idJ( and PF O PE = 8 F E P F  (7)  
F 

Now the representation of the  group G in 5’l preserves the set of the operators {PF}. 
In other words, the PF operator for each value of the index F is an invariant (scalar) 
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operator with respect to the G action in X.  The particular case of the above situation 
occurs when the index F takes only one value, i.e. when X itself is the carrier space 
of the irreducible representation of G. 

Next we introduce the rank 2’ Wigner tensor operators { P F E }  with respect to the 
given G-irreducible splitting { P F }  of X .  Then the arbitrary (not Wigner) tensor operator 
of the same rank and corresponding to the same pair X F  and .YE of the subspaces of 
X is simply the arbitrary factor times the Wigner tensor operator. This factor, which 
depends on 2, X F  and X E  spaces (and does not depend obviously on any basis in 
these spaces), usually is referred to as the ‘reduced matrix element’ (cf Klimyk 1983). 
The PFE Wigner tensor operator is defined as follows 

P F E  = P F  0 P E  @id, 2’+ End X.  (8) 

P F E ( U )  = P F  O P E  @ U E End X (9) 

The G-invariance of the {P , }  tensor operators is self evident. If U E S then 

is referred to as the u-component of PFE. Definition (8) is equivalent to the Wigner- 
Eckart relation. In order to see this let {IF’”)} be the arbitrary basis in X F  and {(PI} 
be the corresponding dual basis in X:. Then 

P F = C  I F ~ ) @ ( F ~ ~ .  
Therefore 

( F p  I P F E  ( U )  I E = ( F p  I( I E ’> @ U), 

i.e. the matrix elements of any comDonent of th Wigner tensor operators coincide 
with the Clebsch-Gordan coefficients. Evidently the tensor operator does not depend 
on the basis either in S or in X spaces (cf Klimyk 1983). The Wigner-Eckart relation 
( 1 1 )  shows that the 9, tensor operator (8) coincides up to the phase with that of 
W,(E, F) operator of Klimyk (1983, definition (21)). 

The tensor operator of rank S is called irreducible if the space 2’ is the carrier 
space of the irreducible representation of G. 

Suppose that the S space decomposes into the direct sum of‘ the G-irreducible 
subspaces S = O L  SL. Let P L  denote the corresponding projector operator, P L :  LZ+ XL,  
then the operator 

(12) 

is the G-irreducible tensor operator. It should be obvious that the set of the tensor 
operators (12) spans the particular basis in End X .  We will discuss a further important 
basis in End X in § 7. 

The tensor products of the tensor operators are the mappings Y @ 2 +  End X ,  etc. 
Corresponding to the irreducible decomposition L Z L O 2 K  = 0 9fK, one can derive 
the Clebsch-Gordan decompositions of the tensor products of the tensor operators. 

For the case of the rotation group S0(3 ) ,  where LfL=[L]  denotes the (2L+ 
1 )-dimensional irreducible representation (and the other indices have a similar mean- 
ing) the decomposition of the tensor product of the Wigner tensor operators (12) has 
the form 

PL F E - P F o P E @ P L  
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Here { } denotes the 9 j  symbol, known as the Fano coefficient (see Fano 1951, Fano 
and Racah 1959, Varschalovich et a1 1975 or Jucys and Bandazitis 1977) and P& is 
the projector on 2':K. 

The G group representations in the space Y determine the natural G-invariant 
isomorphism 4: Y+ Y* which is defined by means of the Clebsch-Gordan coupling 
to the one-dimensional (scalar) representation of G. G-invariance means that g* 0 4 = 
4 o g - ' ,  where g* denotes the pull-back of g. For the SO(3) case we choose the 
following convention 

( 4 U ) W  = ( - ) L i ( o l U @  w )  for U or w E [ L ] .  (14) 

Here i= ( 2 L f  ] ) ' I2  and ( 0 1 ~ 0  w )  denotes the usual Clebsch-Gordan coefficient of the 
SO(3) group. The above isomorphism 4 induces the G-invariant bilinear mappings 
(the scalar products) symmetric for integer values of L: 

4: 2 x 2' 3 U, w + +(U, w )  = ( 4 U )  w, - - 
6 : ~ * x Y * 3 c r , P + 6 ( a , p ) = c r ( 4 - ' p ) .  

As 6 E Y@Y, then from ( 13) one can calculate 

( P ~ E  0 PZ~F,) 6 = G ~ ~ G F F , G E , , ( - ) ' - ~ ( ~ /  $)P, (16) 
The left-hand side of the above formula will be referred to as the dot product of the 
irreducible tensor operators (the scalar product with respect to the 2' space, induced 
by 4 (14)) and will be denoted by 

PkE * PEf/7,= (PkE@PEfFt);. (17) 
It should be obvious that the above G-invariant dot product is not generally symmetric, 
the tensor operators do not commute in the X space. Generally the G-invariant dot 
product 

M .  N ( M O  N ) &  (18) 
is well defined for M and N :  2+ End X or C,  cf (15). 

formula for SO(3): 
For the multipole expansion of the spin-density operator we will need the trace 

$& 
Tr{ 9 ; ~  0 Pgr~, }  = ( - ) F - E -  LK GFF,SEE,$J 0 PLO PK (19) 

and the completeness relation 
A A  

In (19)-(20) $= (2F-t 1)1/2, etc; also the dot product in (20)  is understood in the 
sense of the definitions (15) and (18): cr . P = &ff, P I .  

3. Polarisation operators and the Lie algebra 

The polarisation operators are a special kind of tensor operator and can be defined 
quite generally for arbitrary Lie group G as the subset of the tensor operators, i.e. the 
G-invariant mappings (6), which commute with the set of all Casimir operators of G. 
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The most important example of the polarisation operators is the representation of the 
Lie algebra of G itself in the space X .  The Casimir operators in X can also be 
considered as the polarisation operators whose values on 3' are trivially G-invariant 
operators. We shall identify the Lie algebra Ce of the Lie group G with the space of 
the adjoint representation of G. Then the polarisation operators corresponding to the 
Lie algebra of G are the G-invariant mappings Ce+ End X .  The rank of these Lie 
algebra polarisation operators is determined by the G-irreducible decomposition of 
the '3 (the case of the non-decomposable adjoint representation of G needs a separate 
analysis which we omit here). Then one can build up the Lie algebra polarisation 
operators of arbitrary rank using the tensor products of the Lie algebra polarisation 
operators of 'the lowest rank' and the Clebsch-Gordan decomposition. Corresponding 
to the G-irreducible decompositions 

L 
1=O % = @  ZK and X=@ X F  

the rank L Lie algebra polarisation operator has the general form 

9L = c:P;: ZL + End X, (21) 
F 

where = PkF as given by (12). The numbers c k  ('reduced matrix elements') are 
exactly 'the new invariants of the irreducible representation of G in XF' discovered 
recently by Klimyk (1983). As should be evident, and this was also pointed out by 
Klimyk, the number of such independent invariants, for the fixed X F  space, is equal 
to the number of the independent Casimir operators. We do not agree with Klimyk's 
statements that the meaning of these invariants in the representation theory is not 
clear. They are rather simply related to the eigenvalues of the Casimir operators. The 
compactness of G seems to be irrelevant. 

The Lie algebra-polarisation operator for the rotation group SO(3) is the rank 1 
( L =  1 in (2.1)) tensor operator 9, to which we will refer to as the total spin operator 
in 5%. The only Casimir operator has the form (using (16)-( 17)) 

9. s=c (C:)*PFJ(c:)2= F(F+ 1) .  
F 

Both formulae (21) and (22) lead to the well known expression for the matrix elements 
of the generators of SO(3) (Rose 1957, 1962). 

The Pk operators span the basis of the irreducible polarisation operators in X 
because 

[PFE, 9. q = O e F =  E. 

The aim of the rest of this section is to build up explicitly for the SO(3) group the 
polarisation operators of arbitrary rank L in terms of the total spin-9, rank-1 operator. 
We dejine the rank-L, spin-F ppolarisation operator 9; sL 0 P F  = P F  0 sL through 
the recurrent relation 

L 
9L = c:P::O %+End X 

F 
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where Ce is the Lie algebra of S0(3) ,  cf (21). Using (13) one can get? for L 2  1 

4(2L- l ) ( ~ k ) ~ =  L(2F+ 1 - L)(2F+ 1 + L ) ( c ~ ' ) *  with CO,= 1. (25) 

We will refer to the gL operator, given by (24)-(25), as the rank-L. total spin operator 
in X .  

We would like to stress the clear conclusion which follows from these considerations. 
We have described the two particular bases of the irreducible polarisation operators 
in X: the first one consists of the { Pk} Wigner polarisation operators. Instead of them 
one can use any other basis, cf the basis adopted by Werle (1966) and also that adopted 
by Csonka et a1 (1966) and Steiger and Fritz (1967). What is essential is the relation 
of the operators which span the basis of the irreducible polarisation operators in X 
to the representation of the Lie algebra which has direct physical meaning. In the case 
considered of the SO(3) group, we have built up the basis (9:) (23) of the irreducible 
polarisation operators in X, in terms of the total spin operator 9 and the set of 
projectors {PF}. Another physically relevant basis will be considered in the § 7, in 
terms of the spin operators of the subsystems. 

It should be obvious that for the case when the space X is the carrier space of the 
irreducible representation of G, the polarisation operators coincide with the G-irreduc- 
ible tensor operators. This case has been discussed exhaustively e.g. by Varschalovich 
er a1 (1975). 

4. Multipole expansion of the spin-density operator in terms of the total spin operator 

From .the trace formula (19) and the completeness relation (20) one can easily show 
that the multipole expansion of any operator p E End X has the form 

where 

(9 ",) E Tr{ P 8  k ~ }  E yt,  
Let us consider the spin-density operator diagonal in the total spin, 

[p ,  9' a = o e [ P ,  PF]=o. 

This is equivalent to saying that in (26) 

(PkF) = s F E ( P k > .  (29) 

This means that the spin-density operator is itself the polarisation operator in X, i.e. 
p describes the incoherent mixture of the states with the definite total channel spin F. 
Usually we refer to the mean values of the polarisation operators i.e. to (P;) (27), as 
the Fano polarisation multipole parameters or as the statistical tensors (see Fano 1951). 

For the properly normalised vector o E YL, the trace formula (19) gives (one should 
put K = O  in (19)) 

Tr{ g;~( U)} =  FE (2F + 1)s Lo. 
?There is a misprint in the corresponding formula (38.18) in Jucys and Bandzaitis (1977). 
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Moreover 9&( w )  = c S F E P F  for 4( - w, w )  = 1 and w E &,, therefore 

Tr p =I P F  = 1, where pF (PF) 
F 

is the population of the F-states. Using (28)-(29) and (19) we have 

This can be presented as 

We introduce the function g of the populations (0 s g < 1) 

Then one can define the non-negative degrees of the orientation A !E, 0 d A ; S 1, of rank 
L a  1 as follows 

i(P:)GgfiAie;, (33) 
where 2': are the unit covectors: e ;  * 8 :  = 1, and 

In the following it is convenient to introduce the p-dependant operators 

~ k = e k .  P;= P;(ei) and 

where de; = e ;  and 9; = F:o 4. Then 

(35) 

i(F;)=gJ%:Ai. (36) 

F L =  F - & F  L * g L - c L  F -  > F ( 8 : ) =  e; F: 

In (35) Pg = PF and in (36) the A; parameters are defined as follows 

gSA > = P F  for pF # 8F,0* (37) 
The multipole expansion of the spin-density operator in terms of the total spin 

operators g L  (23)-(25) and of the projectors { P F }  can be obtained simply by substituting 
9;+ 9; = ~4-9; into (26) with (29). However, for the calculations of the angular and 
the polarisation distributions in nuclear and elementary particle reactions, see for 
instance Werle (1966); it is more convenient to have the multipole expansion in terms 
of the Wigner polarisation operators 9; (8), i.e. in terms of P: ( 3 9 ,  which matrix 
elements coincide with the Clebsch-Gordan coefficients. On the other hand for the 
fit to the experimental data it is necessary to have the relationship between all the 
parameters entering the spin-density operator and the measurable physical observables, 
i.e. to the mean values of the physically meaningful operators which are 9; operators 
rather than 9;. Therefore for the phenomenological analysis and for the device of 
the experimental measurements the most essential is (36) which determines the degrees 
of the orientation in terms of the mean values of the total spin operators g L  (23)-(25). 

To summarise, we arrive at the final, simple form of the multipole expansion of 
the spin-density operator (we assume hereafter that p F  Z 8F,o) 

p = g c ( i / f i ) A : P ; .  (38) 
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It is important that the A: parameters in (36) and (38) describing the populations and 
the degrees of the orientation are the non-negative real numbers obeying the conditions 
(30), (34) and (37). 

One of the most essential conclusions which follows from the above multipole 
expansion (38) is that the spin-density operator p can nor be presented in the factorised 
form (4) as we discussed in 0 1. This is due to the population-dependent g function 
(32) which enters into (33), (36j and (38). In (36)-(38) the populations { p F }  and the 
degrees of the orientation {A 4, L # 0) are truly independent parameters as follows from 

Let us investigate briefly the function g defined by means of (32). The conditional 
(34). 

critical (extremal) points of g on the surface (30) are the solutions of the system 

(39) 
Stat dim XF 2 F +  1 dg h d 2 pF = o  

F * p , = p , = - =  
C P F = l  

dim X X E  ( 2 E +  1 ) ’  
F 

This shows that in the space of the populations { pF} the only critical point of g is the 
maximum and it is given by the statistical weights {p”:”’}. Therefore 

stat 

g s  g ={1-l/dimX}”2. (40) 

Until now we have not specified the space .7C of the linear representation of the 
SO(3) group. Some of the previous results obviously could also be generalised for the 
arbitrary Lie group. If the space X is the carrier space of the unitary representation 
of SO(3) then the invariant spin-F operators F:, as well as P:, ( 3 9 ,  are Hermitian 
operators which ensures among other things that p = p+.  In this respect compare with 
the discussion by Werle (1966). Many more limitations for the possible direct applica- 
tions of the multipole expansion (38) come from the S0(3)-irreducible decomposition 
X=@,Xp In fact we do not take into account the possible multiplicities of this 
decomposition; for instance the multiplicities will essentially modify the basis of the 
polarisation operators and all subsequent formulae in this section. Therefore, the 
multipole expansion (38) can be applied directly only to the case when the decomposi- 
tion X = eFXF does not contain the multiple irreducible repressentations of SO( 3). 
This is the case when X is itself the space of the irreducible representation X = [ j ] ,  or 
when X = [ J l ] O [ j 2 ] .  

In this way the spin-density operator diagonal in the total spin is completely 
parametrised by means of the populations {pF}, (30), the degrees of the orientation 
{A;, L #  0}, (36) with (34), and of the unit polarisation tensors (directions) { B : } ,  (33)  
and (35). This parametrisation has been summarised in the introduction for the case 
X = [ j , 1 0 [ j 2 1 ,  see (1)-(3). 

The case X = [ j ]  has been rather exhaustively presented by Werle (1966) and in 
the other papers cited in 5 1 .  In this case one should put p F  = S,, j f 0, in ( 3 2 )  which 
gives 

g = {2j / (2 j  + I )}I/*, (41 1 
and the multipole expansion (38) of the spin-density operator p ( j )  takes the form 

p ( j )  = - 1 {id + (2j)‘” iA:P:}, 2j-k 1 L a  I 
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where i ( F i )  = (2j)’/*ciAf. Needless to say that, for example, p(  1)  describes the 
completely polarised pure state iff ( A  t ) 2 + ( A : ) 2  = 1, i.e. that for the pure polarisation 
state the degree of the vector, rank 1, orientation A f  need not to be 1 for spin j 2  1. 
For the case of the axial symmetry see (80)-(82). 

In connection with the multipole expansion (42) we would like to add the following 
remark. In spite of the fact that the vector polarisation, L = 1 term in (42) is correctly 
calculated by Werle (1966), some authors still refer to and use the incorrect expression 
presented in the well known textbook by Schiff (1968). To see this let us write the 
first-order multipole in (42) explicitly (cf also with (47) and (77 ) )  

The above formula, wherein 0 s A s 1 and e; * e: = 1, has been derived by Werle 
(1966). Comparing this with the Schiff expression (Schiff 1968, p 381) 

p (  j )  =A{ id +i+l& 3 
2J + 1 

we obtain l&lS[$(j+ 1)]Ii2, contrary to the incorrect claim that 161s 1. The Schiff 
formula has been adopted by Hambro and Mukhopadhyay (1975) and also by Muk- 
hopadhyay ( 1977). Therefore most of the qualitative and auantitative conclusions for 
the target nuclear spin j # f  presented by Hambro and Mukhopadhyay (1975) are 
incorrect. In fact the maximal values of 181, in the Hambro and Mukhopadhyay notation, 
are +3’12, 

The case X=[j,]O[j2], in which we are mostly interested in this paper, will be 
discussed in some details in § 5 .  To consider spin-spin and spin-orbit interactions 
(Djrbashyan 1959, Shmushkevich 1959) for the non-relativistic system of the two spins 
jl and j2 on the definite shell one should take X=[j,]O[j2]O[l]. For this case which 
is important in the theory of the atomic depolarisation, one should rederive the 
multipole expansion of the spin-density operator taking into account the multiplicities 
{ m F }  of the irreducible decomposition X =OF mFXF, along the line presented e.g. by 
Klimyk (1983). However, this is outside of the scope of the present paper. 

and 2($)’’2 for the target nuclear spin j = 1, ;, and 3 respectively. 

5. Examples for p( j ,@j , )  

We will consider in some detail the case X = [ i l l@[ j,] of the interacting system of the 
two spins jl and j2 on the K-shell, when [pPF] = 0 V E  Let us consider the population 
dependent g function (32). Because dim X = (2jl + 1)(2j2+ 1)  then one can show, using 
(40), that 

The most important is the case when X=[[t]O[j]. In this case we have the two 
hyperfine states F, = j *+. These states will be characterised by the quantities with the 
subscript ‘+’ and ‘-’ respectively. As p + + p -  = 1, then the g-function (32) can be 
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presented in two alternative forms (for j # 0): 
2 2 j +  1 2 - - - - . -  

- 4 j + 2  4 j + 2  j 

2 -____-.- 4 j + l  1 j ( l - T P - ) .  2 j +  1 - 
4 j + 2  4 j + 2  j + l  

From ( 4 3 )  for j # O  we have 

( 4 4 )  

and for j = O*g = 2 - ’ / * .  By denoting p = p + ,  from (44) we have in particular 

p # 0 (cf with ( 3 7 ) ) ,  4 2 I /2  j = t * g = { 2 p - x p  } , 

j =  l+g={t+p-:p2}I/* ( 4 6 )  

j =t*g = {$(I +p- ip2)}1 /2 .  

Let us consider the systems with vector polarisations only, i.e. when ( F k )  = 0 for L 2  2.  
This happens, for example, in the case of the capture of polarised spin-; muons by 
unpolarised spin-j nuclei. The spin-density operator p ( @ j )  for this process has been 
considered by Bukhvostov and Popov (1967,  1970). In order to compare this with the 
Bukhvostov and Popov results one should substitute Pk+ F k  = c:Pk ( 3 5 )  into the 
multipole expansion (38 ) .  Now putting A F  = A :, we get from (38)  using ( 3 7 )  and ( 2 5 )  

The degrees of the vector polarisations A F  are defined through the mean values of the 
total spin operators according to ( 3 6 ) .  In the full line this reads 

p g h F E [ 3 / F ( F +  l)]1’2(FF). ( 4 8 )  

The spin-density operator ( 4 7 )  is parametrised by the populations { p F } ,  ( 3 0 ) ,  and the 
degrees of the vector polarisations { A F } ,  such that 

0 P F ,  A F S  1 and C p F = 1 ,  C ( A ~ ) ~ s  1. ( 4 9 )  
F F 

They do not describe the spin-density operator ( 4 7 )  completely. The rest of the 
independent information is contained in the set of the directions of the polarisation 
{ e F  e:} of the F-states, 

FF = PF 0 9, 4?F* e F  = 1, 

cf (35)  and (21). 
Let us now adapt ( 4 7 )  and (48) to the case X = [ f ] @ [ j ] ,  
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where 

The comparison of the general multipole expansion ( 5  1)  with formula (9) in Bukhvostov 
and Popov (1967) (or with expansion (7) in Bukhvostov and Popov (1970)) gives the 
relation of our non-negative degrees of the vector polarisation AF, A: + A: S 1, to the 
Bukhvostov-Popov ( BP) parameters A F', 

{ f ( 2 F + 1 ) F (  F + 1 ) } I / '  gh FEF,  
4 ( F  -j) p F ~ t p = -  

2j+  1 

or in the full line 

p+A?'=g  ( 2  - ( j+ l ) (2 j+3))1 '2  A + & + ,  
3 2 j + l  

where d * eF (cf (67) below) and Q denotes the unit vector, Q Q = 1, of the axial 
symmetry of the spin-density operator. It should be stressed that the Bukhvostov and 
Popov parameters {At'} are defined (see ( 1  19)) only for the case of axial symmetry 
which we will consider in detail in 0 6. We should be aware, however, that generally 
in (51)-(52) e+ - e -  # 1. The g-function in (51)-(53) is given by (44). In (53) the axial 
symmetry implies = * 1. 

The maximal values of IpFA?/ correspond to the statistical weights, (45), see also 
(39) and (43). The bounds for A;' derived by Bukhvostov and Popov (1967) follow 
from the particular model of the depolarisation which we consider in 0 8 (compare 
(53) with the model-dependent formulae (143)-( 144)). One should note also that 
formulae (9) and ( 1  1 )  in Bukhvostov and Popov (1967) are not compatible because 
the weight factors p F  have been missed out in ( 1  1).  The misprint has been corrected 
in Bukhvostov and Popov ( 1970), however it appeared again in Bukhvostov et a1 (1972, 
formulae (4) and (7)). These misprints do not disturb of any of the results presented 
there, however they are relevant with respect to the fit to the experimental data (cf for 
instance Bukhvostov et a1 1971)). We discuss the definition of the Bukhvostov and 
Popov parameters {A?} at the end of 0 7 see ( 1 18). 

The explicit expressions for the few first multipoles of (38). The cb-coefficients 
( 2 5 )  which enter into (36) must be calculated ekplicitly; they define the rank-L. total 
spin operator S L ,  (21), (23)-(24). Also from (35) we have 

Quite generally (36) takes the form 

2L/2f(F4-) = L!{  (2L.)  ( 2 F +  1 + L ) !  }"2gAk, 
!( 2 F  - L )  ! ( 5 5 )  
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In particular for the few first multipoles 

( F t )  = fight 

3”’(F:) = @ { F ( F +  l)}”’gA; 

30’/2( F$)  = e{ F (  F + 1)(2F - 1 ) ( 2 F  + 3))’”gA: (56) 

(70)1/2( F:) = F{ F( F + 1)(2F - 1 )( 2 F  + 3)( F - 1 )( F + 2)}’/2gh$ 

3 (70)”’( F:) = i‘{ F (  F + 1 ) ( 2 F  - 1 )( 2 F  + 3)( F - 1 )( F + 2)( 2 F  - 3)( 2 F  + 5)}”’gh$. 

The spin-density operator p ( i @  j) without the restrictive assumption of the vector 
polarisation, i.e. when ( F L > I )  f 0, has been considered firstly by Bukhvostov and Popov 
( 1964) f o r j  = and by Bukhvostov et a1 (1972) fo r j  = 1. Later this spin-density operator 
was considered for the arbitrary spin-j of the nuclear target by Hambro and Mukhopad- 
hyay (1975) and discussed by Mukhopadhyay (1977), for the particular simple model 
of the depolarisation due to the spin-spin hyperfine interaction on the K-shell only. 
This model is considered in 9 9  8 and 9 where we generalise some of the results due 
to Hambro and Mukhopadhyay. In all these papers the factorised form (4) has been 
adopted. Equation ( 5 5 )  allows us to write down explicitly the multipole expansion 
(38) of the spin-density operator p( j ,@j2)  for completely arbitrary spins j, and j,. 

6. Cylindrical symmetry 

Let s E %*, such that i ( s ,  s)  = s s = 1 (see (15)) ,  describes the direction of the axial 
symmetry of the spin-density operator p. Here % is the Lie algebra of the SO(3) group 
(see 0 3). For the total spin operator 9, (21)-(22), in the space X ,  we define the operator 

m = 9 ( s )  E End X. (57) 

Then the cylindrical symmetry of the spin-density operator p means that 

[ P ,  m l =  0. (58) 

Inserting the multipole expansion (38) into the above equation and using ( 1  1)-( 12) 
we can easily obtain the equivalent equation for e:: 

9; = E:C;;Lo 0 PF (59) 

where ( E : ) ’  = $1 and E % =  1. Here the Clebsch-Gordan coefficient C : :  . of the SO(3) 
group should be expressed explicitly as the polynomial of degree L in the m operator. 
We define these polynomials as follows 

P : ( m )  = L ! ~ ~ / ’ { ( ~ L ) ! } - ” ~ C ~ C ~ ~ ~ ~ ,  (60) 

where ck coefficients which has been defined before (25) can be presented in the form 
(cf also with ( 5 5 ) ) ,  

(L! ) ’  ( 2 F + l + L ) !  
2 ” ( f i c 3 ’ = -  

( 2 L ) !  ( 2 F - L ) !  ’ 

Using the expression for the Clebsch-Gordan coefficients presented in the monograph 
by Varschalovich et a1 (1975) or in the book by Jucys and Bandzaitis (1977) one can 
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( F + m ) ! ( F - m ) !  2 

( F +  m + x - L ) ! ( F  - m - x ) !  

= m L  - {terms of the degrees S L - 2). (62) 

For the few ,first multipole orders this reads, 

Pg = id, P:=m, P$= m 2 - i F ( F +  ])id, 

S:= m2-4(3F2+3F- l )m 

9; = m4 -$(6F2+6F - 5 ) m 2 + & F ( F +  1)(F- 1)(F+ 2). (63) 

The equation (58) for e ;  in terms of the vector s can be written now (ipserting 

(64) 

In analogy with the recurrent relation (23) we define the rank-L. tensor s L  E ZL c 0 93 
in terms of the unit vector S E  3 (see 9 10) 

(65) 

(60) into (59) and using (54)): 

( ~ ! 2 " / ' )  * SL,(e;) = E;[ (~L. ) ! ]"~P; (~)  0 PF. 

L 

( S I B S  B ) L -  = P f i B o { S A B S B } = C f i O O B O S L ( J C I L ' d L =  1) .  

Then using essentially (13) and (25) one can prove the following formula 

Therefore the final solution of (58) is 

where E ;  = s L  - e;. (67 )  
L L  e:= E F S  

From (33), and using (64), one can express the degrees of the orientation in terms of 
the mean values of the so-called moment operators m k ,  where l t l F  = m 0 PF and 
k E A( F, F ) ,  namely 

i ( S ; ( m )  0 PF)=- g A ; E k .  

For the explicit calculations one could use also (55)-(56) and*(64). 
Equation (68) suggests the use of the case of the axial symmetry of the spin-density 

operator, instead of the non-negative degrees of the orientation { A ; } ,  (33), the new 
degrees 

(69) 
- L -  L L A F =  E F ~ F ,  

which can take also the negative values, -1 61;s  +1 for LZ 0. 
The cylindrical symmetry has been investigated firstly by Tolhoek and Cox (1953). 

We also refer to the relevant considerations by Steiger and Fritz (1967). Tolhoek and 
Cox (1953) noticed that the moment operators { m t }  for the case of the cylindrical 
symmetry (and only in this case) span the basis for the spin-density operators. However 
the polynomials 9: (62) appear to be the more convenient, equivalent basis. The 
conclusion is well-known: in the case of the cylindrical symmetry the degrees of the 
orientation {i k}, (68)-(69), describe completely the spin-density operator (note that 
the mapping (371, { p F } +  { A ; }  is invertible). The simple fundamental relation (67) 



Spin-density operator for two-spins systems 685 

seems never to have been noticed in the full generality. Tolhoek and COX (1953) 
defined the degrees of the orientation {f;} of the F-states as follows 

FLf; E (P;( m )  0 PF). (70) 

Comparing the Tolhoek and Cox definition with (68) we get rather complicated relation 
to our degrees of the orientation {I;}. In fact, the normalisation of the f k  parameters 
(70) by Tolhoek and Cox (1953) was rather accidental. The normalisation was suggested 
by the special kind of pure polarisation states, so-called totally oriented states which 
are defined by the relation 

(m: )  = Fk. (71) 

As the digression relevant for the general multiple expansion (38) in § 4, note that 
the polynomials 9 k ( m ) ,  (60)-(63) are generating the alternative to (9;) (12), basis 
of the polarisation operators in End Yl 

L! F,, , L  = a , ,  a,,9:( m )  (72) 

where [ am,  akm] = iqk la ,m and 8, = a / d s ' .  Here {s'} are the Cartesian components of 
the vector s (the Cartesian basis in 9 is diagonalising symmetric product 6, (l4)-( 15)). 
One should take into account that a lak  s - s = 26,k, i.e. that the polynomials 9 i ( m )  in 
the definition (72) are homogeneous of the degree L in the components of the non-unit 
vector s, s * s # 1. For instance 

2F1k E F , F k  4- F k F ,  - iF( F 4- 1 ) 6,k, etc. (73) 

The above basis (72) has been employed by Bukhvostov and Popov (1964) and by 
Bukhvostov et a1 (1972). Using the trace formula (19), and also formulae from 
Varschalovich et a1 (1975) (generalising (32.17) in Werle (1966)), one can find the 
relation of the basis (72) to (66). Comparing (33) with the corresponding formulae 
in Bukhvostov et a1 (1972) we have 

g$Lh :Pi = c $ z  "LF,I I L  0 pFPF. (74) 

On the RHS of (74) the factorised form of the spin-density operator (4) is adopted. 
We will not use the Cartesian basis (72) in the present paper, because for the practical 
calculations of the angular and polarisation distributions the multipole expansion in 
the form (38) seems to be the most convenient. It should be stressed however that 
sometimes the Cartesian basis is more convenient, see Bukhvostov et a1 (1972). 

Let us summarise the multipole expansion of the spin-density operator having the 
axial symmetry, 

A 

(75) 
L-L 

P = g  C-*AFC%J P F ,  F 

where 

1 (Ik)*S I .  
F,L#O 

The expansion (75) is most convenient for the calculation of the time dependence of 
the spin-density operator as well as for any kind of the angular and polarisation 
distributions. However for comparison with previous results we consider more 
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explicitly the first few multipole orders. Inserting ( 6 0 )  into (75) gives 

‘ / 2  7 } i:P$(m)oPF 
+ g x f {  F(F+1)(F-1)(F+2)(217-1)(2F+3) 

+terms with L 2 4. (77) 

Using the shorthand notation (P;)=(P;(m) 0 PF), the first few multipoles in ( 6 8 ) ,  
which one often needs in the applications, read 

3’’2(PL) = g { F ( F +  l)}”2gh 

3(5)”2(9$)= g { F ( F +  1)(2F-  1)(2F+3)}”2gi$=3(5)’/2F2f$. ( 7 8 )  

It is convenient to calculate the coefficients for higher-order moments from the recurrent 
relation 

= 31’2Ff; 

2{(2L- 1)(2L+ l)}”2(9:)i;-’ = L{(2F+ 1 + L)(2F-  L +  l)}1’2(9;-’)i:. (79) 

It can be stressed that all the formulae in this section do not need the specification of 
the space Yt of the representations of the SO(3) group except that the irreducible 
decomposition X = 0 Yt, should not contain the multiply irreducible subspaces. This 
point has been discussed at length at the end of the 0 4. 

We will end this section with the application of these formulae to the case X = [ j ] .  
In this case one can choose E,’ = + 1  and moreover one should insert (41) into (76)-(78). 
Denoting for short i L =  i;, etc, we get explicitly for j s $  the following expressions 

p ( i )  =;{id + 2 h ’ P ’ } ,  where 2 ( 9 ’ )  = A ’ = f ’  2 0, (80) 
p (  1 )  =${id +31’2A’9”+3h2P2},  

where J 3 ( 9 ‘ ) = 2 ~ ‘ = J ? f ‘ ,  3 ( P 2 ) = 2 i 2 = 3 f 2 ,  

p ( t )  = a{ id + 2 4  A ’ 9’ + h A2P2 + 2\$ i3 P3}, 

4(P2) = 4(3)1’2i2 = 9f2, where 2(P ’ )  = 151’2A’ = 3f’, 

8 ( 5 ) ’ / ’ ( S 3 )  = 12(3)”2h3 = 27(5)’l2f3. 

The above spin-density operators p (  j) describe the completely polarised pure states 
iff Txfp(j)]*= ~ G X ~ ~ ~  ( I L ) ’ =  1. The multipole expansion for p( l ) ,  (811, has been 
derived previously by Bukhvostov et al (1972). As was noticed in this unpublished 
report the spin-density operator p (  1) describes the totally oriented Tolhoek-Cox state 
(71) iff A ’ = ; &  and I?=$. 

7. Multipole expansion in terms of the individual spin operators 

The basis in End[j] of the polarisation operators discussed in § 3 will induce, through 
the Clebsch-Gordan decomposition, the new basis of the S0(3)-irreducible tensor 
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This set of operators is relevant for the description of the spin-density operator in 
terms of the polarisations of the subsystems. Using the Racah algebra (Varschalovich 
et a1 1975, Jucys and Bandzaitis 1977) one can easily derive the simple relations 
between both these complete bases (12) and (83) 

The spin operator in [j] (see (21)) is given by 

y J se c ! p !  J J  : 3 + End[ j]. 

Then the spin operators of the subsystems are 

Using (85) one can show the obvious equality 

s = j 1 + j 2 ,  

when the LHS is defined by (21). Similarly to the rank- l  
0 3) we define rank-L spin operators of the system 

9’; cj,cp2R; = (Y’:] 0 Y;?)sJfi @sP2 0 0 P L .  

(89) 

total spin operator sL (see 

(90) 

built up entirely from the It should be evident that the 9; tensor operators are 
individual spin operators (86)-(88) by means of (23). Inserting (84) into (26) we 
obtain the multipole expansion of the arbitrary operator p E End([jl]O[j2]) in terms 
of the individual spin operators {9’;}, 

where the summation is for V ~ E  A (  j, j,), Ve E A( j2j2). The conditions (29) and ( 8 5 ) ,  give 

(2;)=0 for f + e +  L =  odd. (92) 
For the calculations of the angular and the polarisation distributions with the spin- 
density operator fulfilling condition (28), the most convenient seem to be (38) and 
(75) rather than (91). At the same time the new parameters (9;) can be more interesting 
for theoretical considerations, e.g. for investigations of the correlations and models of 
the depolarisations, as well as from the experimental point of view. However, they 
are no longer independent which follows from (29) and (84). In fact we have the 
identities 
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These linear relations play the role of the constraints which assure that the composi- 

Inserting (28)-(29) and (33) into (84) and (85) we get 
tions of the mappings (94) and (95) below are the identity mappings. 

From (85) follows the relation important from the experimental point of view, 

Using (86)-(90) one can express the mean values of the rank-L total spin operator in 
F-state through the same rank spin operator of the system (90) in the F-state 

(97) 

The above formula gives the alternative devices for the experimental measurement of 
the populations { p F }  and of the degrees of the orientation {A;}. One needs to recall 
how they are related to the mean values of the total spin operator (33): 

* L L  gFA P F .  i( c ; ) - ' ( F L  0 P F )  

As 

9; = ( -)q-'9fi Yf2 E End X, 
therefore (97) for L = 0 gives 

(98) 

(99) 

and in particular for f =  1, 

C?, . Y , ? o  PF) = t { F ( F +  1) - - j l ( j 1  + 1) - j 2 ( j 2 +  l)}pF. (101) 
For L =  1 we list the two most important relations which follow from (97): 

We would like to stress that all consequences of (84)-(85) are quite general and are 
completely model independent In particular the above formulae tell us how the mean 
value of the total spin operator in the F-state is related to the mean value of the spin 
operators for each of the subsystem. Obviously (84)-(85) contain much more useful 
information than we explore in the present paper. We note however that (84) or (94) 
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for L = 0 gives the important model-independent expression for the non-statistical 
populations 

because 

( 8 5 ) J T r p =  l e ( % & ) =  1 .  

Here is given by (39) and { } in (100) and (104) denote the Racah coefficient 
(Varschalovich et a1 1975, Jucys and Bandzaitis 1977). Inserting (104) into (32) gives 

with 

The rest of this section will be devoted to the case jl = and j, = j arbitrary. The 
appropriate expressions for the Fano coefficients are taken from Varschalovich et al 
(1975) or Jucys and Bandzaitis (1977, formulae ( 3 2 . 1 5 ~ )  and (32.17)). In the appendix 
we collect together a few formulae for the Fano, Racah and Clebsch-Gordan coefficients 
which we need frequently. 

First of all (93) are reduced to the relation 

i’{L(L+ l)}l/,(9?kL) 

= {3L( 2L + 3)( 2j  - L)(2j + L + 2)}1’2( 9? f,,,) 

+ { 3 ( ~ +  1 ) ( 2 ~ -  1 ) ( 2 j - ~ +  1 ) ( 2 j + ~ + 1 ) } ” ~ ( 9 ? 2 ~ - ~ j .  (107) 
Equation (94) can be presented separately for each hyperfine level F = j *+: 

2iJ3gAke: = i2{(2 j+  ~ + 2 ) ( 2 j  - L +  I)}”~(%~O“,) 

+{3L(2L- 1) (2 j+L+ 1)(2j+L+2)}i’2(9?2:,-l) 

- { 3 ( L +  1)(2L+3)(2j  - L)(2j-  L +  1)}1’2(?2k~+~), 

2L?gA!e!= i 2 { ( 2 j + L +  1)(2j-L)}1’2(%!~L) 

-{3L(2L- 1)(2j - L)(2j- L +  1)}”’(9?f~-,) 

+{3(L+ 1)(2L+3)(2j+ L +  1)(2j+L+2)}”2(9?e:,+i). 

In particular from (108) for L = 0 we obtain the general expression for the non-statistical 
populations 

and 
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Expansion (95) can now be presented as the set of the three formulae: 

Yi( 9?kL) = { (2j  + L + 2)(2j - L + 1 )}”’gA $44 + { (2j  + L i- 1 )(2j  - L)}’”gA !e!, 

3 jL(%FL-,)=g - 
1 I / Z  

{[(2j+ L+ 1) (2 j+L  2)]”*A:et 
( 2 L -  1) 

1/2 * *  

I/2 L L - [ (2j-  L)(2j-L+ l ) ]  A-e-), 

I/2 L L +[(2 j+L+ 1)(2j+L+2)]  L e - } .  

Finally the most important consequences of the identity (97) seems to be the 
following one 

(P+ 0 j : o  P,) = ( I  -+Lo 2 j +  1 P+), (P- 0 j :  0 P-) = ( 1  +A) (SL 0 P-), 
2j+ 1 

(1 12) 
and 

1 
2j+ 1 

(P* 0 Y F L - l  0 P*)= +-(SL 0 P,) 

should be useful for phenomenological analysis. In particular (96)-(97) and their 
consequences ( 1  12)-( 113) can be used in the multipole expansion of the spin-density 
operator. Let us note that ( 1  13) for L = 1 leads to 

(114) 
1 

2j+ 1 
(P*”j loP*)=*-(90P*),  

which has been frequently used by Bukhvostov and Popov (1967) and (1970). 
The same remark concern also to the above general formulae (104), (109), for the 

non-statistical populations: they are completely model independent. The only parameter 
(%:,) which is responsible for the non-statistical populations for the case p ( i 0 j )  can 
and should be determined experimentally. We have 

= -${ j (  j + 1 )}-”2(91/2 9,). (115) 

For each concrete model of the atomic depolarisation (Djrbashyan 1959, Shmushkevich 
1959, Bukhvostov and Popov 1964, Bukhvostov 1966, 1969, Bukhvostov et al 1972) 
this parameter can be calculated as a function of the initial polarisation of the free 
system. Such calculations of the (9112 9,) parameter were first performed by Bukhvos- 
tov and Popov (1964) for the case p ( f @ i )  and then f o r j  = 1 by Bukhvostov et a1 (1972) 
in the simplest model of the depolarisation which we consider in § §  8 and 9. Hambro 
and Mukhopadyay (1975) calculated (Y l l ,  9 9,) for the arbitrary nuclear target spin j 
in the same model. We will discuss these results in § 9 which is devoted to the simplest 
model of the non-statistical hyperfine populations. The experimental determination 
of the (Y,,,. q) parameter in (109) with (115), should be very important for the 
verification of the theoretical models of the process of the formation of the miu-mesic 
atom (which is referred to for short as the depolarisation process). 
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The parameters introduced by Bukhvostov and Popov (1967, 1970) (see also 
Bukhvostov et a1 1972, Oziewicz 1977) are simply related to (9;). Comparing the 
decomposition (91)-(92) with for instance equations (8)-(9) of Bukhvostov et a1 (1972) 
we get 

a e f L  = (-)fC!jY( 9;). 

q L G  gFA$& with q F  G 4: * S, (1 17) 

(1 16) 

We also note that the q L  statistical tensors used in Oziewicz (1977) are related to the 
degrees of the orientation of the present paper as follows 

where s is the direction of the axial symmetry (unit vector of the muon polarisation). 
The parameters Qefr (Oziewicz 1977) are obviously F-independent (the index F should 
be removed from equations (5)-(6) (Oziewicz 1977)). Formula (7) in Oziewicz (1977) 
is nothing other than another form of ( 1  1 I ) ,  i.e. summation over F is understood on 
the RHS. Note that 

2s . (k1)= 0011. (118) 

The identity ( I  14) for the case of the axial symmetry of the spin-density operator 
with the direction of the symmetry described by the unit vector s, allows us to define 
the Bukhvostov and Popov parameters 

P ~ A B , P = ~ S * ( P ~ O ~ ~  0 PF). (1 19) 

If [p ,  PF]=O V F ,  then (119) is identical to definition (9) in Bukhvostov and Popov 
(1970), and should be compared with (53). 

8. Depolarisation: The simplest model 

The pioneering work on the theory of the atomic depolarisation is due to Djrbashyan 
(1959) and Shmushkevich (1959). The theory has been subsequently developed by 
Bukhvostov and Popov (1964) and by Bukhvostov (1966, 1969). In this section and 
8 9 we generalise the simplest model of the depolarisation considered by Bukhvostov 
et al (1972) for X=[$]@[l] and then by Hambro and Mukhopadhyay (1975) for 
X=[[f]@[j] to the general case X=[J,]O[j,]. In this simplest model it is assumed 
that the depolarisation is due to the spin-spin (i.e. hyperfine) interaction of the magnetic 
moments on the K-shell only. This leads to the hyperfine splitting of the K-shell. 
However, a more reaslistic theory of the depolarisation should also take into account 
the fine and hyperfine splitting of the excited atomic shells (see the papers by Bukhvos- 
tov et a1 previously cited). 

The initial, not correlated system (the free case) is described by the tensor product 
of the spin-density operators of the individual subsystems, 

P ( ~ I  10 P ( j J  E (End[jl l)  0 (End[jdl c End([j,l 0[j21). ( 120) 
The arbitrary operator 0 E End 3E can be decomposed into the two parts: 

Ff E 

where the first term is the polarisation operator, or thepolarisedpart of 6. The polarised 
part and, in particular, every polarisation operator is the integral of the motion with 
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respect to the spin-spin interaction with the Hamiltonian operator (cf (90) and (99)), 

H = 1 afY{, Yf2, (122) 

where the summation is for O < f ~ m i n ( 2 j , ,  2j2). Here { a f }  are arbitrary coupling 
constants. The above Hamiltonian operator is commuting with the all polarisation 
operators in Yt. The time averaged second part in the decomposition (121) vanishes. 
The splitting of the K-shell does depend on the coupling constants { a f > .  However, 
any kind of hyperfine (HF)  interaction (122) leads to the same model of the spin-density 
operator of the atom 

H F  
dj1)@djJ- p ( j I @ j 2 ) = C  P , o p ( j I ) @ ~ ( j 2 ) o  PF. (123) 

The spin-density operator in the above model can be represented in the form (38) with 
the degrees of the orientation of the atom expressed in terms of the degrees of the 
orientations of the individual free subsystems exactly according to (94). To see this 
we will denote ( )o the mean value of the corresponding operator with respect to the 
product (120) of the individual spin-operators, and by ( ? the mean value with respect 
to the model spin-density operator (123). Then 

(9!&> = 8 F E ( p k ) 0  and w;>o f (3;). ( 124) 

Therefore calculating firstly the (9:)o according to (85) and afterwards using (123) 
we obtain (94) with (9$)o parameters instead of (%$) under the sign of the summation 
on the RHS. It is very important to realise that for (%$)o none of the relations (92), 
(93) or (95) hold. Simply, all Fano parameters of the subsystems are independent. 
Contrary to the constraints (93), (94) with (%,k)o parameters on the RHS,  now imply 
the relations between the degrees of the orientation of the atom {A;}, they are no 
longer independent. These relations serve as an experimental test of the above model 
of the depolarisation (123). 

Comparing (120) with the general multipole expansion (91) and using (83) we get 
the well known formula (Devons and Goldfarb 1957, Goldfarb and Bromley 1962, 
equation (5.1)), 

( m o  = ((p{,)@(p;2?)1 (125) 

(9f )=Tr{p( j )  0 9~}={2j)1’2~-lAfej ,  (126) 

where 

are the Fano polarisation parameters of the individual free subsystem (cf with (27) 
and (42)). 

The rest of this section will be devoted to the important case of the statistical 
hyperfine populations p F  = in the above model. In D 9 we will collect together the 
formulae and discuss the several examples relevant for the general case p F  f (see 
(104)) of the non-statistical hyperfine populations in the same model. 

Suppose that the second subsystem is completely unpolarised 

P(j2) = id / (%+ 11, 

then 
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It is now a simple matter to express the mean value of the rank-L total spin operator 
in any hyperfine state F through the mean value of the r a n k - l  spin operator of the 
first subsystem in the initial free state. To d o  this one should recall (21) and (90), and 
use (63) and  (85). The result is 

For L = 1, using the expression for the Racah coefficient given in the appendix, we get 

which, for j ,  = i and j ,  = j ,  reduces to 

The last formula in the full line reads 

Obviously (l30)-(  131) imply automatically the axial symmetry of the spin-density 
operator. 

All relations (128)-( 131) can be experimentally tested for verification of the ualidity 
of the model (123) in the reactions with the one (second) subsystem unpolarised (127). 

Inserting into (128) the degrees of orientation according to expressions (33)-(36) 
with (43) for S!t and according to (42) or (126) we obtain 

with 

(We recall that the degrees of the orientation have been defined as the non-negative 
numbers, see (33)). For L =  1 (132)-(133), or (129) yields 

with 

eF-  el, = sign{ F( F + 1 )  +jl(Jl + 1 ) -j2(j2 + 1 )}. (135) 

Formulae (128)-(135) generalise for arbitrary spins j ,  and j 2 ,  what has been 
considered previously by Bukhvostov and Popov (1967, 1970) for the case j ,  =& and 
j 2 = j .  This case corresponds, for example, to the initial state of the miu-mesic atom 
in the capture of the polarised spin-4 muons by unpolarised spin-j  target nuclei. Also 
this is the particular (model-dependent) case of the general situation which has been 
considered in § 5, when the atom p( fC3 j )  has vector polarisation only. As O s  A: s 1 
(for L # O ) ,  then the degrees of the orientation of the atom {A k} are bound from above, 
in the model of the depolarisatbn considered here, according to ( 132) and ( 134). 
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For the case considered previously by Bukhvostov and Popov, jl = and j2 = j, we 
put A = Aj, in (134) and obtain 

( 1  +(F-j)(2j+ 1)/  
A F =  1 / 2  ’---.-- fl {3(4j+ l)F(F+ l)}1’2A’ 

e F *  s = sign{ 1 + ( F  - j ) ( 2 j +  I)},  (137) 

where s = el, describes the direction of the axial symmetry. More explicitly (136) can 
be written as follows 

A { ( j +  1 ) ( 2 j + 3 ) j ”  9 ~ - = i { ~ W } l ’ *  (138) 
2 j + l  3 ( 4 j + I )  

A + = -  
2 j + l  3 ( 4 j + l )  

The degree of the total orientation of the system p(i@j)  with the vector polarisation 
only 

A‘”‘ = {(A,)? + ( A  - )2}1 ’2  =S 1, (139) 

A I o ‘  = d A  1 1  (140) 

and can be presented in the form 

where A is the degree of the initial polarisation of the spin-; subsystem ( O s  A 1 ) .  
For the model of depolarisation considered here, inserting (138) into (139), we obtain 

112 d, =-[ 1 4 j2+4j+3 (&) 
25 + 1 3(4j+ 1) I - =  

In order to obtain the bounds for the Bukhovostov and Popov parameters (see (53) 
and ( 1  19)) one should insert (136)-(138) into (53) with 

(this follows from (127) and (45)). Also taking into account that ( 6 7 ) 9 e ,  = E+ we 
obtaint 

4 F - 2 j + 1  
3(2j+ 1 )  AY, A, 

i.e. 

4 F - 2 j + 1  /Atpis 
3(2j+ 1) ’ 

(143) 

(144) 

We would like to stress that the bound (144) follows from the model of the 
depolarisation (123). 

For a proper understanding of formulae (132)-( 144) the physical meaning of the 
degrees of the orientations {A:} and { A i }  should be made clear. This can be read off 
from the expressions (36), (42), ( 5 5 ) - ( 5 6 )  and the model independent relations derived 
in the $ 7  (like (97), (103), ( 1  12)-( 114)). (The model-dependent relations (128)-( 144) 
should be tested experimentally and cannot be used as the definitions!). The definitions 

+ The inequality after formula ( 1  1 )  in Bukhvostov and Popov (1967) contains an unimportant misprint, 
related probably to the redefinition of the Tolhoek and Cox (1953) parameters, cf (1 19) with the definitions 
(145). 
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and the identities derived in the $5  4, 5 and 7 show how the degrees of the orientation 
are related to the mean values of the appropriate spin operators. We shall recall these 
definitions once more for L = 1 and for the statistical hyperfine populations (127). 

( 8 0 ) + 2 ~ *  (S l /2)=A =faO. 

From (52) for g = 'it (142) and using ( 1  14) 

Here generally, according to (33)-(34), Os h F  s 1, and for the Tolhoek-Cox parameters 
we obtain f +  3 0 and f -  6 0. Definitions (145) are obviously model independent. 

We shall now calculate parameter ( 1  18) starting from (145) and using the model 
expressions (138). The result is 

2s * ( i t )  = (4j+ l)d:h( = Q o l  I E - fAo,  I), (146) 

where dj is given above (141). 

9. The spin-density operator for initially both subsystems oriented in the simplest 
model of the depolarisation: non-statistical hyperfine populations 

The case when for the both initial free subsystems p ( j )  # idl (2j- t  1 )  .has been firstly 
considered by Bukhvostov and Popov (1964) for X = [;IO[;], then by Bukhvostov et 
a1 (1972) for X=[i]O[l]. Hambro and Mukhopadhyay (1975) considered the case 
Yt = [ i ]O[ j ]  with the arbitrary target spin j ,  however, contrary to previous papers, they 
restricted investigations to the resulting populations (in the model of the depolarisation 
which we described in § 8). In § §  7 and 8 we generalised these results to the case 
3t= [ j , ]O[ j , ]  (see the formulae (94) and (104)). We gave the full description of the 
resulting spin-density operator (123) i.e. the formulae for the populations and for the 
resulting degrees of the orientation o f  the atom in terms of the degrees of the orientations 
of the initial free subsystems. 

In this section we would like to discuss in more detail the case Yt=[[t]O[j] i.e. 
( lo@-(  110) in the model (123). 

Firstly we shall recall the model-independent formulae for the populations. Insert- 
ing (115) into (109)-(110) we have 

P F  = Z + [ 4 ( F - j ) / ( 2 j +  1)1(91/2 ' 9,) (147) 

and 

The model gives 
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where A = A :/* and e = e! ,2 .  This model expression should be compared with the main 
formula (8) of the work (Hambro and Mukhopadhyay 1975). We obtain the coincidence 
provided that 

b = [$( j + l)]”’A:e; 4 6 (  s [!( j + I)]’” (1 50) 

contrary to the incorrect claim that Ib is  1. We discussed this mistake after (42a) in 
4. Therefore, the conclusions of Hambro and Mukhopadhyay (1975) are correct only 

for the case j = &, which has been considered previously by Bukhvostov and Popov 
(1964). 

In what follows we will need the model expression for the g-function: 

The parameters ( can be calculated from ( 125)-( 126), 

i ( R I L ) O =  (2j)’”A:ef 

[ 3 ( 2 L - 1 )] 12( R f L  - I )o = ( 2j) I /  A A :- ( e 0 e:- ’ ) 
[3(2L+ 3)]’/2(RfL+I)o = (2j)’”AA:’’ (e@ e:*’)L. 

( 1  52) 

(Here one should remember that (37) and ( 4 1 ) J ( 2 j ) ” * A ~ =  1.) The most interesting 
is the case of the cylindrical symmetries of both the initially free subsystems. We note 
that the situation when the directions of these symmetries (of both subsystems) do not 
coincide has been considered in the unpublished report by Bukhvostov et a1 (1972). 
We discuss this general case in § 10. Here we like to restrict ourself to the simplest 
situation of the initial axial symmetry with the common direction of the symmetry. 
Then we can write 

e F  L ( e @ e f * ’ ) L =  

L L  e: e; = E,  E ~ .  
( 153) 

Inserting (152)-( 153) into (108) and recalling the notation (69) we get for L = 1,2 ,3  

3 1 / 2 J 3 g i l  + - - ~ [ 3 ( 2 j + 3 ) ] ” ~ 1 ;  . + [ f ( j +  1)(2j+3)]1/2A +2j[f(2j- l)]”2A1:; 

3’/*j’ghL =[3 j ( j+  1)(2j- 1)]”21: -[;j(2j- I)]’/’A -2 [ f j ( j+  1)(2j+3)]1/2AA:; 

5’/27gi: = {5j ( j+  2)(2j - I )} ’ / ’ i f+  2{ij( j+2)(2j+3)}”’Ai; 

+ 3{f j ( j  - 1 )(2j  - 1 )}”’A IJ3 ; 
51/2j13gi! = {5j( j -  1 ) ( 2 j + 3 ) } ” * I ~ - 2 { ~ j ( j -  1)(2j-  I ) } ” ~ A ~ ;  

- 3{i j ( j  + 2)(2j + 3 ) } ” * A ~ ~ ;  
7”2?gi’,= {7j ( j -  1)(2j+5)} 1 / 2 -  A, 3 +3{fj( j+2)(2j+5)} 1 / 2 A h 2  , 

+ f { j ( j -  1)(2j-3)}’I2AX;; 

7’/2pg13 = { 7 j ( j + 2 ) ( 2 j - 3 ) } ’ / 2 i ; - 3 { f j ( j -  1)(2j-3)}”2A1: 

- f {  j (  j + 2)(2j + 5)}’/*Ah;. 

These formula cover the cases p(fC3;) and p ( f 0 1 ) .  The comparison with equations 
(12) in Bukhvostov et a1 (1972) show the misprint in the formula for A?‘. It should 
be stressed that the g-function in the formulae (154) is given by the expression (151). 
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Formulae (1 54) follow from the model of the depolarisation and can be tested experi- 
mentally. 

For the case p ( $ @ $ )  we have finally ( j  = $) 

2(3)’”g = [9 - ( A A , )  ] 

2(2)’”gi1, = A + i j  

I  2 I / Z  

(155) 61/2gi:  = 

p+ = $ + ? A A , ,  I - 1  h j  = Aje. e:. 

Here and in (154) A is non-negative, ( 4  =e), 

Inserting (41) into (78), 

3Il2s (9/) = j [ 2 ( j +  1 ) y i ;  = 31’2jfj. (157) 

The degrees of the orientation of the whole atom 
(70), (78 ) .  One can use also the identities ( 1  12)-( 114), 

should be read off from (68), 

A more realistic model for the system p ( i @ i )  has been considered by Bukhvostov and 
Popov (1964). Our only innovation in (155)-( 158) is that our degrees of the orientation 
are truly independent of the populations i.e. that OG A k S  1. As a consequence the 
g-function occurs which makes the dependence of the atom polarisation on the initial 
polarisations correct. 

The case p ( f @ l )  has been considered by Bukhvostov et al (1972) adopting the 
factorised form of the spin-density operator. Now from (154) we obtain 

9(2)1/2giL=-A +2(3)1’2i’-4AIz 

where 3(2)”2g=[15-2(AA’)2]’/2, and p+ = 2 + 2  3 93 1 / 2 h i ’  . Formulae (log), (154) for the 
case p ( $ @ j )  imply the 2j  model-dependent relations (rather complicated, as one can 
see from ( 1  59)) which can be tested experimentally. 

10. SO(3) Clebsch-Gordan coefficients for the different bases 

The evaluation of the SO(3) Clebsch-Gordan coefficients for the different bases in the 
space of the representation of SO(3) group allows us to enlarge essentially the results 
of 0 9 to the case when the directions of the cylindrical symmetrics of the initially free 
subsystems do not coincide. We would like to give here the self-contained discussion 
of this subject which also plays a crucial role in the study of the angular and polarisation 
distributions in the particle reactions and decays. Our approach is based on the notion 
of the tensor operator ( $ 5  2 and 3) and can be applied also to the other Lie groups. 
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The novelty of our presentation is due to the explicit dependence of the SO(3) 
irreducible bases in [ j ]  on the basis in 9= R3 and in particularly on the axis s of the 
spin quantisation, i.e. we are diagonalising the coordinate independent Hermitian 
operator 9 ( s ) ,  cf Steiger and Fritz (1967). The different bases in [ j ]  correspond to 
the different bases in the SO(3) Lie algebra. 

To each ordered and orthonormal (WRT qj(14)) basis e in 9, i.e. to the ordered 
triple of the unit mutually orthogonal vectors, e = {e,, e,, e3} ,  one can associate the 
Cartan basis (with frame) in the complexified SO(3) Lie algebra and, in this way, 
specify the basis in [ j ] :  e + { ( jpe)} .  The different bases in [ j ]  correspond to the 
diagonalisation of the different elements in the Lie algebra, i.e. to the different axes 
of the quantisation, and are related to the different choices of the phases in the complex 
one-dimensional eigensubspaces. 

The aim of this section is the evaluation of the SO(3) Clebsch-Gordan coefficient 

C ?: ~p ( abd ) = ( ( A B  ) D6 I{ 1 Aaa ) 0 1 BPb)}, (160) 

for the three different 9 bases corresponding to three different quantisation axes. If 
the 59 bases coincide, a = b = d, then (160) is reduced to the usual basis independent 
Clebsch-Gordan coefficient (Varschalovich et a1 1975, Jucys and Bandzaitis 1977), 
c 2: B~ E R. 

Let us see how the Wigner %functions, which are the matrix elements of the 
irreducible representation G 3 g -  9 ( g )  E End .T are related to the tensor operators 
(6). The G-invariance of the mapping (6), Y : Z + E n d X  means that (Werle 1966, 
formula (8.13)), 

(161) 9( g )  0 3 = 3 g  0 9 ( g )  : 2 + End Yt. 

One should note that the above equation is not compatible with Klimyk’s definition, 
(cf equations (2)-(3) in Klimyk 1983). As a consequence of (161) we have for the 
SO(3) group the coordinate free relations 

[9(n), 9 ( m ) ] = i 9 ( n  x m )  

where n x m = 9 ( n ) m ,  and 

9 k ) l j p e )  = h g e ) .  

The Wigner 9 function is defined as 

9 L p ( a  + b )  = ( jaal jpb) .  

cAaBp(abd)  DS = a,D,(d + e)C2zBv(e)B,A, (e+ a ) D % ( e +  b )  

(163) 

This gives the main formula of this section, 

(164) 

which is independent of the basis e. The well known symmetry properties of the usual 
basis-independent Clebsch-Gordan coefficients imply the corresponding symmetries 
for different bases. For example from (164) we get 

C z a B p ( a b d )  = ( - ) A + B - D  c BpAa ( b a d ) .  

Next we would like to evaluate the explicit expressions for the important Clebsch- 
Gordan coefficients C ? ~ B o ( ~ b d  1, usually referred to as the invariant angular functions 
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because they can be expressed in terms of the scalar products of the corresponding 
vectors. The explicit expressions and the recurrent relations for some of the C::BO(abd) 
Clebsch-Gordan coefficients have been presented by MacFarlane ( 1962). The Clebsch- 
Gordan coefficient C::BO( abd)  coincides with the invariant angular function 
SA,,( abd)  from Ciechanowicz and Oziewicz (1984, formula (3.26)). These particular 
Clebsch-Gordan coefficients in fact do not depend on the full bases a, b and d in 9; 
they are completely determined, as we will see, by the unit vectors, denoted here by 
{ a ,  b, d } ,  describing the corresponding axes of the spin quantisations. 

Accepting the parametrisation of the rotations through the Euler angles according 
to the convention from the monograph by Werle (1966, P 1 1 )  we have the following 
relation of the Wigner functions to the Condon and Snortley (1935) spherical functions 
(formula (12.18) from Werle 1966) 

idLo= (47T)1’2Ym, * i  

where 

Inserting (165) into (164) we get three different expressions for the Clebsch-Gordan 
coefficients C ~ ~ B o ( a b d )  by taking e = d, a and b in (164) correspondingly. In these 
expressions i t  will be convenient to introduce a shorthand abbreviation for the scalar 
complex angular function: 

[ a b d ] = ( a x d )  . ( b x d ) + i ( a x b )  . d  (166) 

where one can use ( a  x d )  * ( b  x d )  = U * b - ( U  d ) ( b  d ) .  Below in formulae (167) we 
will also denote 

Re[. . . I k  
i Im[. . .Ik for 

for T =even 
=odd.  

[. . . I :  = { 
C::BO( Ubd) = C ::BOPA( U d )  PE( b * d )  

( B - k )  !( D - k )  !} ”2 

k > O  

( 1 6 7 4  

(167b) 

k:.O 

X P ~ ’ ( U *  b ) P g ’ ( b *  d) [abd]”;B- , .  (1674 

As an example let us consider the particular case of the above formulae which one 
needs most often in the applic’ations: the case A = 1 for which the most convenient are 
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the expressions (167a) and (167c) giving at most two terms, 

C&,(abd) = -i[s(s+ l)]-1’2u x b .  d P : ( b .  d ) ,  

Cf:,-lo(abd) = [ s ( ~ s  - 1) ] - ”*{~  * d P j ( b .  d )  - U  * b P : - l ( b .  d ) } ,  (168) 

Cy:,+1o( abd) = [ ( s  + 1 ) ( 2 ~  + 3 ) ] - ” * { ~  * d P : ( b  d )  - U d Pj+l( b * d ) } .  

Here we have used the recurrent relations P: = xP:,, - (s  + 1 
The states I jOs) E [ j ] ,  deserve the special attention: we will show that I jOs) = s’, i.e. 

that these states coincide with the rank-j tensors introduced in (65). What is special 
about these states is that they in fact d o  not depend on the full basis s in 9: they are 
completely determined by the unit vector s, describing the axis of the spin quantisation. 
Rotations around the quantisation axis s leave the states s’ = / j O s )  unchanged, as it 
follows from (162). These states define the mapping s +  s’, i.e. the embedding (65) of 
the real spheres d 2  + 0’’. The explicit evaluation of this embedding will show the equality 
s’ = IjOs). In fact the embedding (65) is induced by the mapping 

9 3 s ~ K e r  % ( s ) c X ,  (169) 

where dim Ker 9 ( s )  = 1 for Vs E 9 and for 3t = [ j ] ,  j = integer. We have 9 ( s ) /  j O s )  = 0 
and I jOs) * I jOs) = 1, ( 15). For the spherical components s i  of the vector s J  = 1 jOs) we 
get 

= SP,-~ + x P : - , .  

IjOs) = I j A r ) ( j A r / j O s )  

= l jAr )9Ao(r+s ) .  (170) 
Therefore 

s i ( r )  = gio(r+ s ) - F A  = (-)As--A, (171) 
see formula (12.48) in Werle (1966). The vectors with the property (171) are referred 
to as the real vectors. For real vectors a * b = I; ( -)AaAb-a E R. Therefore I jOs) E 0’’ as 
it follows from (171). 

Because 

( a A O b B ) D =  P,”, {IAOa)@/BOb)}, (172) 
where PADB is the projector on the SO(3) irreducible subspace [ D ] c [ A ] O [ B ] ,  then 
using (160), we have 

( a A @  b B ) D  = 1 I D G d ) C ~ ~ B o ( a b d ) .  (173) 
The above formula for a = b = d = s coincide with the recurrent relation (65) which 
show explicitly that s’ = I jOs) and moreover the way in which s’ is built up  from s E $9. 

The following formulae are some of the simple consequences of the above dis- 
cussion, 

(174) a L  b L  = (LOalLOb) = dko( a + b )  = PL( U * b ) .  

( a A  0 b B )  d D  = C ~ ~ B o (  abd).  (175) 
( a A @  b B ) € .  ( a C @  b D ) €  

These formulae are indispensable for the calculation of the angular and polarisation 
distributions in the scattering and decay processes. 
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Now we can come back to the main subject of this paper, which is the calculation 
of the degrees of the orientation of the atom {A;}, according to (94), in the model of 
the depolarisation due to the hyperfine spin-spin interaction i.e. with the help of 
(125)-( 126). We wish to generalise the results of $ 9  related to the case of the cylindrical 
symmetries of the both initially free subsystems. Then according to (67) we can put 
in (125)-( 126) 

4, =e;, /  and e:, = €;:se. 

Therefore the problem of the evaluation of the ( R k ) ,  parameters (125) is reduced to 
the calculation of the angular function according to (173) above, i.e. we 
must calculate another kind of Clebsch-Gordan coefficient for the different bases, 
namely Cz:Bo(abd)  with d = a or b. From (164) we have 

The above formulae are sufficient for the model calculations of the atom degrees 
of the orientation for any particular two-spin systems. For instance (176) jointly with 
(94) allows us to calculate the square of the non-negative degrees of the orientation 
of the atom (A:)2, in terms of the initial degrees of the orientation {i$,, i;?} and in 
terms of P H ( r .  s), generalising in this way (154). 

10. Conclusion 

We have presented the brief theory of the tensor and polarisation operators in the 
basis free manner. Although we were interested in the SO(3) irreducible tensor 
operators our presentation could be generalised and used for arbitrary Lie groups. 
Then we apply this formalism to the multipole expansion of the spin-density operator. 
The multipole expansion (38) is, strictly speaking, valid only when the space X does 
not contain the multiple irreducible representations of the SO( 3) group. The generalisa- 
tion to the case which takes into account accurately the multiplicities of the irreducible 
decomposition of Yt can be done easily (see Klimyk (1983)). 

The most essential conclusion is that the spin-density operator can not be presented 
in the factorised form (4) as we have discussed already in the introduction. The 
multipole expansion (38) gives, among other things the correct model-dependent 
expressions of § 9. 

We have considered in some detail the spin-density operator for the interacting 
two arbitrary spin systems in $0 5-7. These results should help with the phenomenologi- 
cal analysis of the decays of the muonic atoms and other nuclear reactions. For 
example, they will be useful for the investigation of the nuclear muon-capture reaction 
by oriented or polarised targets with arbitrary spin. We hope that some of our results 
can find applications also in the complicated theory of the atomic depolarisation of 
muons as developed by Djrbashyan (1959), Shmushkevich (1959) and mostly by 
Bukhvostov (1966, 1969). 

The last sections are devoted to the simplest model of the depolarisation. The 
paper does not exhaust the subject: more reaslistic models of the formation of the 
atom need to be investigated along the lines developed by Bukhvostov. 
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Appendix 

We list here some formulae for the SO(3) Fano, Racah and  Clebsch-Gordan coefficients 
which we used frequently in this paper. They are taken from the excellent monographs 
by Varschalovich et al (1975) and by Jucys and Bandzaitis (1977). 

= c f & , w ; ( e ,  L ) ,  

where 

w:( e, L )  = 

( 2 j +  L + 2 ) ! ( 2 j +  1 - L ) !  I,'* 
for F = j + +  

for F = j - $ .  

( 2 j t  e +  1 ) ! ( 2 j - e ) !  ) 
) ' I 2  

c : " " " + ( ~ )  . 

( 2 j + e +  l ) ! ( 2 j - e ) !  
( w e (  ( 2 j +  L ) ! ( 2 j -  L -  I ) !  1:. ], $} = ( - ) I + F + l l f J 2  F (  F + 1 1 + j t  ( jl + 1 - j 2 ( j 2  + 1 1 

2 F y , [ j , ( j ,  + l)F(F+ l)]I'* . 
L I / *  
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